mini_inflate.c 11.9 KB
Newer Older
Alexander Yurtsev's avatar
Alexander Yurtsev committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
/*-------------------------------------------------------------------------
 * Filename:      mini_inflate.c
 * Version:       $Id: mini_inflate.c,v 1.3 2002/01/24 22:58:42 rfeany Exp $
 * Copyright:     Copyright (C) 2001, Russ Dill
 * Author:        Russ Dill <Russ.Dill@asu.edu>
 * Description:   Mini inflate implementation (RFC 1951)
 *-----------------------------------------------------------------------*/
/*
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include <config.h>
#include <jffs2/mini_inflate.h>

/* The order that the code lengths in section 3.2.7 are in */
static unsigned char huffman_order[] = {16, 17, 18,  0,  8,  7,  9,  6, 10,  5,
					11,  4, 12,  3, 13,  2, 14,  1, 15};

inline void cramfs_memset(int *s, const int c, size n)
{
	n--;
	for (;n > 0; n--) s[n] = c;
	s[0] = c;
}

/* associate a stream with a block of data and reset the stream */
static void init_stream(struct bitstream *stream, unsigned char *data,
			void *(*inflate_memcpy)(void *, const void *, size))
{
	stream->error = NO_ERROR;
	stream->memcpy = inflate_memcpy;
	stream->decoded = 0;
	stream->data = data;
	stream->bit = 0;	/* The first bit of the stream is the lsb of the
				 * first byte */

	/* really sorry about all this initialization, think of a better way,
	 * let me know and it will get cleaned up */
	stream->codes.bits = 8;
	stream->codes.num_symbols = 19;
	stream->codes.lengths = stream->code_lengths;
	stream->codes.symbols = stream->code_symbols;
	stream->codes.count = stream->code_count;
	stream->codes.first = stream->code_first;
	stream->codes.pos = stream->code_pos;

	stream->lengths.bits = 16;
	stream->lengths.num_symbols = 288;
	stream->lengths.lengths = stream->length_lengths;
	stream->lengths.symbols = stream->length_symbols;
	stream->lengths.count = stream->length_count;
	stream->lengths.first = stream->length_first;
	stream->lengths.pos = stream->length_pos;

	stream->distance.bits = 16;
	stream->distance.num_symbols = 32;
	stream->distance.lengths = stream->distance_lengths;
	stream->distance.symbols = stream->distance_symbols;
	stream->distance.count = stream->distance_count;
	stream->distance.first = stream->distance_first;
	stream->distance.pos = stream->distance_pos;

}

/* pull 'bits' bits out of the stream. The last bit pulled it returned as the
 * msb. (section 3.1.1)
 */
inline unsigned long pull_bits(struct bitstream *stream,
			       const unsigned int bits)
{
	unsigned long ret;
	int i;

	ret = 0;
	for (i = 0; i < bits; i++) {
		ret += ((*(stream->data) >> stream->bit) & 1) << i;

		/* if, before incrementing, we are on bit 7,
		 * go to the lsb of the next byte */
		if (stream->bit++ == 7) {
			stream->bit = 0;
			stream->data++;
		}
	}
	return ret;
}

inline int pull_bit(struct bitstream *stream)
{
	int ret = ((*(stream->data) >> stream->bit) & 1);
	if (stream->bit++ == 7) {
		stream->bit = 0;
		stream->data++;
	}
	return ret;
}

/* discard bits up to the next whole byte */
static void discard_bits(struct bitstream *stream)
{
	if (stream->bit != 0) {
		stream->bit = 0;
		stream->data++;
	}
}

/* No decompression, the data is all literals (section 3.2.4) */
static void decompress_none(struct bitstream *stream, unsigned char *dest)
{
	unsigned int length;

	discard_bits(stream);
	length = *(stream->data++);
	length += *(stream->data++) << 8;
	pull_bits(stream, 16);	/* throw away the inverse of the size */

	stream->decoded += length;
	stream->memcpy(dest, stream->data, length);
	stream->data += length;
}

/* Read in a symbol from the stream (section 3.2.2) */
static int read_symbol(struct bitstream *stream, struct huffman_set *set)
{
	int bits = 0;
	int code = 0;
	while (!(set->count[bits] && code < set->first[bits] +
					     set->count[bits])) {
		code = (code << 1) + pull_bit(stream);
		if (++bits > set->bits) {
			/* error decoding (corrupted data?) */
			stream->error = CODE_NOT_FOUND;
			return -1;
		}
	}
	return set->symbols[set->pos[bits] + code - set->first[bits]];
}

/* decompress a stream of data encoded with the passed length and distance
 * huffman codes */
static void decompress_huffman(struct bitstream *stream, unsigned char *dest)
{
	struct huffman_set *lengths = &(stream->lengths);
	struct huffman_set *distance = &(stream->distance);

	int symbol, length, dist, i;

	do {
		if ((symbol = read_symbol(stream, lengths)) < 0) return;
		if (symbol < 256) {
			*(dest++) = symbol; /* symbol is a literal */
			stream->decoded++;
		} else if (symbol > 256) {
			/* Determine the length of the repitition
			 * (section 3.2.5) */
			if (symbol < 265) length = symbol - 254;
			else if (symbol == 285) length = 258;
			else {
				length = pull_bits(stream, (symbol - 261) >> 2);
				length += (4 << ((symbol - 261) >> 2)) + 3;
				length += ((symbol - 1) % 4) <<
					  ((symbol - 261) >> 2);
			}

			/* Determine how far back to go */
			if ((symbol = read_symbol(stream, distance)) < 0)
				return;
			if (symbol < 4) dist = symbol + 1;
			else {
				dist = pull_bits(stream, (symbol - 2) >> 1);
				dist += (2 << ((symbol - 2) >> 1)) + 1;
				dist += (symbol % 2) << ((symbol - 2) >> 1);
			}
			stream->decoded += length;
			for (i = 0; i < length; i++) {
				*dest = dest[-dist];
				dest++;
			}
		}
	} while (symbol != 256); /* 256 is the end of the data block */
}

/* Fill the lookup tables (section 3.2.2) */
static void fill_code_tables(struct huffman_set *set)
{
	int code = 0, i, length;

	/* fill in the first code of each bit length, and the pos pointer */
	set->pos[0] = 0;
	for (i = 1; i < set->bits; i++) {
		code = (code + set->count[i - 1]) << 1;
		set->first[i] = code;
		set->pos[i] = set->pos[i - 1] + set->count[i - 1];
	}

	/* Fill in the table of symbols in order of their huffman code */
	for (i = 0; i < set->num_symbols; i++) {
		if ((length = set->lengths[i]))
			set->symbols[set->pos[length]++] = i;
	}

	/* reset the pos pointer */
	for (i = 1; i < set->bits; i++) set->pos[i] -= set->count[i];
}

static void init_code_tables(struct huffman_set *set)
{
	cramfs_memset(set->lengths, 0, set->num_symbols);
	cramfs_memset(set->count, 0, set->bits);
	cramfs_memset(set->first, 0, set->bits);
}

/* read in the huffman codes for dynamic decoding (section 3.2.7) */
static void decompress_dynamic(struct bitstream *stream, unsigned char *dest)
{
	/* I tried my best to minimize the memory footprint here, while still
	 * keeping up performance. I really dislike the _lengths[] tables, but
	 * I see no way of eliminating them without a sizable performance
	 * impact. The first struct table keeps track of stats on each bit
	 * length. The _length table keeps a record of the bit length of each
	 * symbol. The _symbols table is for looking up symbols by the huffman
	 * code (the pos element points to the first place in the symbol table
	 * where that bit length occurs). I also hate the initization of these
	 * structs, if someone knows how to compact these, lemme know. */

	struct huffman_set *codes = &(stream->codes);
	struct huffman_set *lengths = &(stream->lengths);
	struct huffman_set *distance = &(stream->distance);

	int hlit = pull_bits(stream, 5) + 257;
	int hdist = pull_bits(stream, 5) + 1;
	int hclen = pull_bits(stream, 4) + 4;
	int length, curr_code, symbol, i, last_code;

	last_code = 0;

	init_code_tables(codes);
	init_code_tables(lengths);
	init_code_tables(distance);

	/* fill in the count of each bit length' as well as the lengths
	 * table */
	for (i = 0; i < hclen; i++) {
		length = pull_bits(stream, 3);
		codes->lengths[huffman_order[i]] = length;
		if (length) codes->count[length]++;

	}
	fill_code_tables(codes);

	/* Do the same for the length codes, being carefull of wrap through
	 * to the distance table */
	curr_code = 0;
	while (curr_code < hlit) {
		if ((symbol = read_symbol(stream, codes)) < 0) return;
		if (symbol == 0) {
			curr_code++;
			last_code = 0;
		} else if (symbol < 16) { /* Literal length */
			lengths->lengths[curr_code] =  last_code = symbol;
			lengths->count[symbol]++;
			curr_code++;
		} else if (symbol == 16) { /* repeat the last symbol 3 - 6
					    * times */
			length = 3 + pull_bits(stream, 2);
			for (;length; length--, curr_code++)
				if (curr_code < hlit) {
					lengths->lengths[curr_code] =
						last_code;
					lengths->count[last_code]++;
				} else { /* wrap to the distance table */
					distance->lengths[curr_code - hlit] =
						last_code;
					distance->count[last_code]++;
				}
		} else if (symbol == 17) { /* repeat a bit length 0 */
			curr_code += 3 + pull_bits(stream, 3);
			last_code = 0;
		} else { /* same, but more times */
			curr_code += 11 + pull_bits(stream, 7);
			last_code = 0;
		}
	}
	fill_code_tables(lengths);

	/* Fill the distance table, don't need to worry about wrapthrough
	 * here */
	curr_code -= hlit;
	while (curr_code < hdist) {
		if ((symbol = read_symbol(stream, codes)) < 0) return;
		if (symbol == 0) {
			curr_code++;
			last_code = 0;
		} else if (symbol < 16) {
			distance->lengths[curr_code] = last_code = symbol;
			distance->count[symbol]++;
			curr_code++;
		} else if (symbol == 16) {
			length = 3 + pull_bits(stream, 2);
			for (;length; length--, curr_code++) {
				distance->lengths[curr_code] =
					last_code;
				distance->count[last_code]++;
			}
		} else if (symbol == 17) {
			curr_code += 3 + pull_bits(stream, 3);
			last_code = 0;
		} else {
			curr_code += 11 + pull_bits(stream, 7);
			last_code = 0;
		}
	}
	fill_code_tables(distance);

	decompress_huffman(stream, dest);
}

/* fill in the length and distance huffman codes for fixed encoding
 * (section 3.2.6) */
static void decompress_fixed(struct bitstream *stream, unsigned char *dest)
{
	/* let gcc fill in the initial values */
	struct huffman_set *lengths = &(stream->lengths);
	struct huffman_set *distance = &(stream->distance);

	cramfs_memset(lengths->count, 0, 16);
	cramfs_memset(lengths->first, 0, 16);
	cramfs_memset(lengths->lengths, 8, 144);
	cramfs_memset(lengths->lengths + 144, 9, 112);
	cramfs_memset(lengths->lengths + 256, 7, 24);
	cramfs_memset(lengths->lengths + 280, 8, 8);
	lengths->count[7] = 24;
	lengths->count[8] = 152;
	lengths->count[9] = 112;

	cramfs_memset(distance->count, 0, 16);
	cramfs_memset(distance->first, 0, 16);
	cramfs_memset(distance->lengths, 5, 32);
	distance->count[5] = 32;


	fill_code_tables(lengths);
	fill_code_tables(distance);


	decompress_huffman(stream, dest);
}

/* returns the number of bytes decoded, < 0 if there was an error. Note that
 * this function assumes that the block starts on a byte boundry
 * (non-compliant, but I don't see where this would happen). section 3.2.3 */
long decompress_block(unsigned char *dest, unsigned char *source,
		      void *(*inflate_memcpy)(void *, const void *, size))
{
	int bfinal, btype;
	struct bitstream stream;

	init_stream(&stream, source, inflate_memcpy);
	do {
		bfinal = pull_bit(&stream);
		btype = pull_bits(&stream, 2);
		if (btype == NO_COMP) decompress_none(&stream, dest + stream.decoded);
		else if (btype == DYNAMIC_COMP)
			decompress_dynamic(&stream, dest + stream.decoded);
		else if (btype == FIXED_COMP) decompress_fixed(&stream, dest + stream.decoded);
		else stream.error = COMP_UNKNOWN;
	} while (!bfinal && !stream.error);

#if 0
	putstr("decompress_block start\r\n");
	putLabeledWord("stream.error = ",stream.error);
	putLabeledWord("stream.decoded = ",stream.decoded);
	putLabeledWord("dest = ",dest);
	putstr("decompress_block end\r\n");
#endif
	return stream.error ? -stream.error : stream.decoded;
}