mmc.c 26.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright 2008, Freescale Semiconductor, Inc
 * Andy Fleming
 *
 * Based vaguely on the Linux code
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <config.h>
#include <common.h>
#include <command.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <linux/list.h>
#include <div64.h>

35 36 37 38 39
/* Set block count limit because of 16 bit register limit on some hardware*/
#ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT
#define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535
#endif

40 41 42
static struct list_head mmc_devices;
static int cur_dev_num = -1;

43
int __board_mmc_getcd(struct mmc *mmc) {
44 45 46
	return -1;
}

47
int board_mmc_getcd(struct mmc *mmc)__attribute__((weak,
48 49 50 51
	alias("__board_mmc_getcd")));

int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
#ifdef CONFIG_MMC_TRACE
	int ret;
	int i;
	u8 *ptr;

	printf("CMD_SEND:%d\n", cmd->cmdidx);
	printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
	printf("\t\tFLAG\t\t\t %d\n", cmd->flags);
	ret = mmc->send_cmd(mmc, cmd, data);
	switch (cmd->resp_type) {
		case MMC_RSP_NONE:
			printf("\t\tMMC_RSP_NONE\n");
			break;
		case MMC_RSP_R1:
			printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
				cmd->response[0]);
			break;
		case MMC_RSP_R1b:
			printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
				cmd->response[0]);
			break;
		case MMC_RSP_R2:
			printf("\t\tMMC_RSP_R2\t\t 0x%08X \n",
				cmd->response[0]);
			printf("\t\t          \t\t 0x%08X \n",
				cmd->response[1]);
			printf("\t\t          \t\t 0x%08X \n",
				cmd->response[2]);
			printf("\t\t          \t\t 0x%08X \n",
				cmd->response[3]);
			printf("\n");
			printf("\t\t\t\t\tDUMPING DATA\n");
			for (i = 0; i < 4; i++) {
				int j;
				printf("\t\t\t\t\t%03d - ", i*4);
				ptr = &cmd->response[i];
				ptr += 3;
				for (j = 0; j < 4; j++)
					printf("%02X ", *ptr--);
				printf("\n");
			}
			break;
		case MMC_RSP_R3:
			printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
				cmd->response[0]);
			break;
		default:
			printf("\t\tERROR MMC rsp not supported\n");
			break;
	}
	return ret;
#else
104
	return mmc->send_cmd(mmc, cmd, data);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
#endif
}

int mmc_send_status(struct mmc *mmc, int timeout)
{
	struct mmc_cmd cmd;
	int err, retries = 5;
#ifdef CONFIG_MMC_TRACE
	int status;
#endif

	cmd.cmdidx = MMC_CMD_SEND_STATUS;
	cmd.resp_type = MMC_RSP_R1;
	if (!mmc_host_is_spi(mmc))
		cmd.cmdarg = mmc->rca << 16;
	cmd.flags = 0;

	do {
		err = mmc_send_cmd(mmc, &cmd, NULL);
		if (!err) {
			if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) &&
			    (cmd.response[0] & MMC_STATUS_CURR_STATE) !=
			     MMC_STATE_PRG)
				break;
			else if (cmd.response[0] & MMC_STATUS_MASK) {
				printf("Status Error: 0x%08X\n",
					cmd.response[0]);
				return COMM_ERR;
			}
		} else if (--retries < 0)
			return err;

		udelay(1000);

	} while (timeout--);

#ifdef CONFIG_MMC_TRACE
	status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
	printf("CURR STATE:%d\n", status);
#endif
	if (!timeout) {
		printf("Timeout waiting card ready\n");
		return TIMEOUT;
	}

	return 0;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
}

int mmc_set_blocklen(struct mmc *mmc, int len)
{
	struct mmc_cmd cmd;

	cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
	cmd.resp_type = MMC_RSP_R1;
	cmd.cmdarg = len;
	cmd.flags = 0;

	return mmc_send_cmd(mmc, &cmd, NULL);
}

struct mmc *find_mmc_device(int dev_num)
{
	struct mmc *m;
	struct list_head *entry;

	list_for_each(entry, &mmc_devices) {
		m = list_entry(entry, struct mmc, link);

		if (m->block_dev.dev == dev_num)
			return m;
	}

	printf("MMC Device %d not found\n", dev_num);

	return NULL;
}

182
static ulong mmc_erase_t(struct mmc *mmc, ulong start, lbaint_t blkcnt)
183 184
{
	struct mmc_cmd cmd;
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	ulong end;
	int err, start_cmd, end_cmd;

	if (mmc->high_capacity)
		end = start + blkcnt - 1;
	else {
		end = (start + blkcnt - 1) * mmc->write_bl_len;
		start *= mmc->write_bl_len;
	}

	if (IS_SD(mmc)) {
		start_cmd = SD_CMD_ERASE_WR_BLK_START;
		end_cmd = SD_CMD_ERASE_WR_BLK_END;
	} else {
		start_cmd = MMC_CMD_ERASE_GROUP_START;
		end_cmd = MMC_CMD_ERASE_GROUP_END;
	}

	cmd.cmdidx = start_cmd;
	cmd.cmdarg = start;
	cmd.resp_type = MMC_RSP_R1;
	cmd.flags = 0;

	err = mmc_send_cmd(mmc, &cmd, NULL);
	if (err)
		goto err_out;

	cmd.cmdidx = end_cmd;
	cmd.cmdarg = end;

	err = mmc_send_cmd(mmc, &cmd, NULL);
	if (err)
		goto err_out;

	cmd.cmdidx = MMC_CMD_ERASE;
	cmd.cmdarg = SECURE_ERASE;
	cmd.resp_type = MMC_RSP_R1b;

	err = mmc_send_cmd(mmc, &cmd, NULL);
	if (err)
		goto err_out;

	return 0;

err_out:
	puts("mmc erase failed\n");
	return err;
}

static unsigned long
mmc_berase(int dev_num, unsigned long start, lbaint_t blkcnt)
{
	int err = 0;
238
	struct mmc *mmc = find_mmc_device(dev_num);
239
	lbaint_t blk = 0, blk_r = 0;
240 241 242 243

	if (!mmc)
		return -1;

244 245 246 247 248 249 250 251 252 253 254 255 256
	if ((start % mmc->erase_grp_size) || (blkcnt % mmc->erase_grp_size))
		printf("\n\nCaution! Your devices Erase group is 0x%x\n"
			"The erase range would be change to 0x%lx~0x%lx\n\n",
		       mmc->erase_grp_size, start & ~(mmc->erase_grp_size - 1),
		       ((start + blkcnt + mmc->erase_grp_size)
		       & ~(mmc->erase_grp_size - 1)) - 1);

	while (blk < blkcnt) {
		blk_r = ((blkcnt - blk) > mmc->erase_grp_size) ?
			mmc->erase_grp_size : (blkcnt - blk);
		err = mmc_erase_t(mmc, start + blk, blk_r);
		if (err)
			break;
257

258 259
		blk += blk_r;
	}
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274
	return blk;
}

static ulong
mmc_write_blocks(struct mmc *mmc, ulong start, lbaint_t blkcnt, const void*src)
{
	struct mmc_cmd cmd;
	struct mmc_data data;
	int timeout = 1000;

	if ((start + blkcnt) > mmc->block_dev.lba) {
		printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
			start + blkcnt, mmc->block_dev.lba);
		return 0;
275 276 277 278 279 280 281 282 283 284
	}

	if (blkcnt > 1)
		cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK;
	else
		cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;

	if (mmc->high_capacity)
		cmd.cmdarg = start;
	else
285
		cmd.cmdarg = start * mmc->write_bl_len;
286 287 288 289 290 291

	cmd.resp_type = MMC_RSP_R1;
	cmd.flags = 0;

	data.src = src;
	data.blocks = blkcnt;
292
	data.blocksize = mmc->write_bl_len;
293 294
	data.flags = MMC_DATA_WRITE;

295 296 297
	if (mmc_send_cmd(mmc, &cmd, &data)) {
		printf("mmc write failed\n");
		return 0;
298 299
	}

300 301 302 303
	/* SPI multiblock writes terminate using a special
	 * token, not a STOP_TRANSMISSION request.
	 */
	if (!mmc_host_is_spi(mmc) && blkcnt > 1) {
304 305 306 307
		cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
		cmd.cmdarg = 0;
		cmd.resp_type = MMC_RSP_R1b;
		cmd.flags = 0;
308 309 310 311
		if (mmc_send_cmd(mmc, &cmd, NULL)) {
			printf("mmc fail to send stop cmd\n");
			return 0;
		}
312 313
	}

314 315 316 317
	/* Waiting for the ready status */
	if (mmc_send_status(mmc, timeout))
		return 0;

318 319 320
	return blkcnt;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
static ulong
mmc_bwrite(int dev_num, ulong start, lbaint_t blkcnt, const void*src)
{
	lbaint_t cur, blocks_todo = blkcnt;

	struct mmc *mmc = find_mmc_device(dev_num);
	if (!mmc)
		return 0;

	if (mmc_set_blocklen(mmc, mmc->write_bl_len))
		return 0;

	do {
		cur = (blocks_todo > mmc->b_max) ?  mmc->b_max : blocks_todo;
		if(mmc_write_blocks(mmc, start, cur, src) != cur)
			return 0;
		blocks_todo -= cur;
		start += cur;
		src += cur * mmc->write_bl_len;
	} while (blocks_todo > 0);

	return blkcnt;
}

int mmc_read_blocks(struct mmc *mmc, void *dst, ulong start, lbaint_t blkcnt)
346 347 348 349
{
	struct mmc_cmd cmd;
	struct mmc_data data;

350 351 352 353
	if (blkcnt > 1)
		cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
	else
		cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
354 355

	if (mmc->high_capacity)
356
		cmd.cmdarg = start;
357
	else
358
		cmd.cmdarg = start * mmc->read_bl_len;
359 360 361 362 363

	cmd.resp_type = MMC_RSP_R1;
	cmd.flags = 0;

	data.dest = dst;
364
	data.blocks = blkcnt;
365 366 367
	data.blocksize = mmc->read_bl_len;
	data.flags = MMC_DATA_READ;

368 369
	if (mmc_send_cmd(mmc, &cmd, &data))
		return 0;
370

371 372 373 374 375 376 377 378 379
	if (blkcnt > 1) {
		cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
		cmd.cmdarg = 0;
		cmd.resp_type = MMC_RSP_R1b;
		cmd.flags = 0;
		if (mmc_send_cmd(mmc, &cmd, NULL)) {
			printf("mmc fail to send stop cmd\n");
			return 0;
		}
380 381
	}

382
	return blkcnt;
383 384 385 386
}

static ulong mmc_bread(int dev_num, ulong start, lbaint_t blkcnt, void *dst)
{
387
	lbaint_t cur, blocks_todo = blkcnt;
388

389
	if (blkcnt == 0)
390 391
		return 0;

392 393 394
	struct mmc *mmc = find_mmc_device(dev_num);
	if (!mmc)
		return 0;
395

396 397 398
	if ((start + blkcnt) > mmc->block_dev.lba) {
		printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
			start + blkcnt, mmc->block_dev.lba);
399 400 401
		return 0;
	}

402 403
	if (mmc_set_blocklen(mmc, mmc->read_bl_len))
		return 0;
404

405 406 407 408 409 410 411 412
	do {
		cur = (blocks_todo > mmc->b_max) ?  mmc->b_max : blocks_todo;
		if(mmc_read_blocks(mmc, dst, start, cur) != cur)
			return 0;
		blocks_todo -= cur;
		start += cur;
		dst += cur * mmc->read_bl_len;
	} while (blocks_todo > 0);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

	return blkcnt;
}

int mmc_go_idle(struct mmc* mmc)
{
	struct mmc_cmd cmd;
	int err;

	udelay(1000);

	cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
	cmd.cmdarg = 0;
	cmd.resp_type = MMC_RSP_NONE;
	cmd.flags = 0;

	err = mmc_send_cmd(mmc, &cmd, NULL);

	if (err)
		return err;

	udelay(2000);

	return 0;
}

int
sd_send_op_cond(struct mmc *mmc)
{
	int timeout = 1000;
	int err;
	struct mmc_cmd cmd;

	do {
		cmd.cmdidx = MMC_CMD_APP_CMD;
		cmd.resp_type = MMC_RSP_R1;
		cmd.cmdarg = 0;
		cmd.flags = 0;

		err = mmc_send_cmd(mmc, &cmd, NULL);

		if (err)
			return err;

		cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
		cmd.resp_type = MMC_RSP_R3;

		/*
		 * Most cards do not answer if some reserved bits
		 * in the ocr are set. However, Some controller
		 * can set bit 7 (reserved for low voltages), but
		 * how to manage low voltages SD card is not yet
		 * specified.
		 */
467 468
		cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
			(mmc->voltages & 0xff8000);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

		if (mmc->version == SD_VERSION_2)
			cmd.cmdarg |= OCR_HCS;

		err = mmc_send_cmd(mmc, &cmd, NULL);

		if (err)
			return err;

		udelay(1000);
	} while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);

	if (timeout <= 0)
		return UNUSABLE_ERR;

	if (mmc->version != SD_VERSION_2)
		mmc->version = SD_VERSION_1_0;

487 488 489 490 491 492 493 494 495 496 497 498
	if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
		cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
		cmd.resp_type = MMC_RSP_R3;
		cmd.cmdarg = 0;
		cmd.flags = 0;

		err = mmc_send_cmd(mmc, &cmd, NULL);

		if (err)
			return err;
	}

499 500 501 502 503 504 505 506 507 508
	mmc->ocr = cmd.response[0];

	mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
	mmc->rca = 0;

	return 0;
}

int mmc_send_op_cond(struct mmc *mmc)
{
509
	int timeout = 10000;
510 511 512 513 514 515
	struct mmc_cmd cmd;
	int err;

	/* Some cards seem to need this */
	mmc_go_idle(mmc);

516 517 518 519 520 521 522 523 524 525 526 527 528
 	/* Asking to the card its capabilities */
 	cmd.cmdidx = MMC_CMD_SEND_OP_COND;
 	cmd.resp_type = MMC_RSP_R3;
 	cmd.cmdarg = 0;
 	cmd.flags = 0;

 	err = mmc_send_cmd(mmc, &cmd, NULL);

 	if (err)
 		return err;

 	udelay(1000);

529 530 531
	do {
		cmd.cmdidx = MMC_CMD_SEND_OP_COND;
		cmd.resp_type = MMC_RSP_R3;
532 533 534 535 536 537 538 539
		cmd.cmdarg = (mmc_host_is_spi(mmc) ? 0 :
				(mmc->voltages &
				(cmd.response[0] & OCR_VOLTAGE_MASK)) |
				(cmd.response[0] & OCR_ACCESS_MODE));

		if (mmc->host_caps & MMC_MODE_HC)
			cmd.cmdarg |= OCR_HCS;

540 541 542 543 544 545 546 547 548 549 550 551 552
		cmd.flags = 0;

		err = mmc_send_cmd(mmc, &cmd, NULL);

		if (err)
			return err;

		udelay(1000);
	} while (!(cmd.response[0] & OCR_BUSY) && timeout--);

	if (timeout <= 0)
		return UNUSABLE_ERR;

553 554 555 556 557 558 559 560 561 562 563 564
	if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
		cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
		cmd.resp_type = MMC_RSP_R3;
		cmd.cmdarg = 0;
		cmd.flags = 0;

		err = mmc_send_cmd(mmc, &cmd, NULL);

		if (err)
			return err;
	}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	mmc->version = MMC_VERSION_UNKNOWN;
	mmc->ocr = cmd.response[0];

	mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
	mmc->rca = 0;

	return 0;
}


int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd)
{
	struct mmc_cmd cmd;
	struct mmc_data data;
	int err;

	/* Get the Card Status Register */
	cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
	cmd.resp_type = MMC_RSP_R1;
	cmd.cmdarg = 0;
	cmd.flags = 0;

	data.dest = ext_csd;
	data.blocks = 1;
	data.blocksize = 512;
	data.flags = MMC_DATA_READ;

	err = mmc_send_cmd(mmc, &cmd, &data);

	return err;
}


int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
{
	struct mmc_cmd cmd;
601 602
	int timeout = 1000;
	int ret;
603 604 605 606

	cmd.cmdidx = MMC_CMD_SWITCH;
	cmd.resp_type = MMC_RSP_R1b;
	cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
607 608
				 (index << 16) |
				 (value << 8);
609 610
	cmd.flags = 0;

611 612 613 614 615 616 617 618
	ret = mmc_send_cmd(mmc, &cmd, NULL);

	/* Waiting for the ready status */
	if (!ret)
		ret = mmc_send_status(mmc, timeout);

	return ret;

619 620 621 622
}

int mmc_change_freq(struct mmc *mmc)
{
623
	ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, 512);
624 625 626 627 628
	char cardtype;
	int err;

	mmc->card_caps = 0;

629 630 631
	if (mmc_host_is_spi(mmc))
		return 0;

632 633 634 635 636 637 638 639 640
	/* Only version 4 supports high-speed */
	if (mmc->version < MMC_VERSION_4)
		return 0;

	err = mmc_send_ext_csd(mmc, ext_csd);

	if (err)
		return err;

641
	cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf;
642 643 644 645 646 647 648 649 650 651 652 653 654

	err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);

	if (err)
		return err;

	/* Now check to see that it worked */
	err = mmc_send_ext_csd(mmc, ext_csd);

	if (err)
		return err;

	/* No high-speed support */
655
	if (!ext_csd[EXT_CSD_HS_TIMING])
656 657 658 659 660 661 662 663 664 665 666
		return 0;

	/* High Speed is set, there are two types: 52MHz and 26MHz */
	if (cardtype & MMC_HS_52MHZ)
		mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
	else
		mmc->card_caps |= MMC_MODE_HS;

	return 0;
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
int mmc_switch_part(int dev_num, unsigned int part_num)
{
	struct mmc *mmc = find_mmc_device(dev_num);

	if (!mmc)
		return -1;

	return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
			  (mmc->part_config & ~PART_ACCESS_MASK)
			  | (part_num & PART_ACCESS_MASK));
}

int mmc_getcd(struct mmc *mmc)
{
	int cd;

	cd = board_mmc_getcd(mmc);

	if ((cd < 0) && mmc->getcd)
		cd = mmc->getcd(mmc);

	return cd;
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
	struct mmc_cmd cmd;
	struct mmc_data data;

	/* Switch the frequency */
	cmd.cmdidx = SD_CMD_SWITCH_FUNC;
	cmd.resp_type = MMC_RSP_R1;
	cmd.cmdarg = (mode << 31) | 0xffffff;
	cmd.cmdarg &= ~(0xf << (group * 4));
	cmd.cmdarg |= value << (group * 4);
	cmd.flags = 0;

	data.dest = (char *)resp;
	data.blocksize = 64;
	data.blocks = 1;
	data.flags = MMC_DATA_READ;

	return mmc_send_cmd(mmc, &cmd, &data);
}


int sd_change_freq(struct mmc *mmc)
{
	int err;
	struct mmc_cmd cmd;
717 718
	ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
	ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
719 720 721 722 723
	struct mmc_data data;
	int timeout;

	mmc->card_caps = 0;

724 725 726
	if (mmc_host_is_spi(mmc))
		return 0;

727 728
	timeout = 3;

729
	/* Read the SCR to find out if this card supports higher speeds */
730 731 732
#ifdef CONFIG_MMC_RETRY_SCR_FIX
retry_scr:
#endif
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	cmd.cmdidx = MMC_CMD_APP_CMD;
	cmd.resp_type = MMC_RSP_R1;
	cmd.cmdarg = mmc->rca << 16;
	cmd.flags = 0;

	err = mmc_send_cmd(mmc, &cmd, NULL);

	if (err)
		return err;

	cmd.cmdidx = SD_CMD_APP_SEND_SCR;
	cmd.resp_type = MMC_RSP_R1;
	cmd.cmdarg = 0;
	cmd.flags = 0;

748
#ifndef CONFIG_MMC_RETRY_SCR_FIX
749
retry_scr:
750
#endif
751
	data.dest = (char *)scr;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
	data.blocksize = 8;
	data.blocks = 1;
	data.flags = MMC_DATA_READ;

	err = mmc_send_cmd(mmc, &cmd, &data);

	if (err) {
		if (timeout--)
			goto retry_scr;

		return err;
	}

	mmc->scr[0] = __be32_to_cpu(scr[0]);
	mmc->scr[1] = __be32_to_cpu(scr[1]);

	switch ((mmc->scr[0] >> 24) & 0xf) {
		case 0:
			mmc->version = SD_VERSION_1_0;
			break;
		case 1:
			mmc->version = SD_VERSION_1_10;
			break;
		case 2:
			mmc->version = SD_VERSION_2;
			break;
		default:
			mmc->version = SD_VERSION_1_0;
			break;
	}

783 784 785
	if (mmc->scr[0] & SD_DATA_4BIT)
		mmc->card_caps |= MMC_MODE_4BIT;

786 787 788 789 790 791 792
	/* Version 1.0 doesn't support switching */
	if (mmc->version == SD_VERSION_1_0)
		return 0;

	timeout = 4;
	while (timeout--) {
		err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
793
				(u8 *)switch_status);
794 795 796 797 798 799 800 801 802 803 804 805 806

		if (err)
			return err;

		/* The high-speed function is busy.  Try again */
		if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
			break;
	}

	/* If high-speed isn't supported, we return */
	if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
		return 0;

807 808 809 810 811 812 813 814 815 816 817
	/*
	 * If the host doesn't support SD_HIGHSPEED, do not switch card to
	 * HIGHSPEED mode even if the card support SD_HIGHSPPED.
	 * This can avoid furthur problem when the card runs in different
	 * mode between the host.
	 */
	if (!((mmc->host_caps & MMC_MODE_HS_52MHz) &&
		(mmc->host_caps & MMC_MODE_HS)))
		return 0;

	err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
818 819 820 821 822 823 824 825 826 827 828 829

	if (err)
		return err;

	if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
		mmc->card_caps |= MMC_MODE_HS;

	return 0;
}

/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
830
static const int fbase[] = {
831 832 833 834 835 836 837 838 839
	10000,
	100000,
	1000000,
	10000000,
};

/* Multiplier values for TRAN_SPEED.  Multiplied by 10 to be nice
 * to platforms without floating point.
 */
840
static const int multipliers[] = {
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	0,	/* reserved */
	10,
	12,
	13,
	15,
	20,
	25,
	30,
	35,
	40,
	45,
	50,
	55,
	60,
	70,
	80,
};

void mmc_set_ios(struct mmc *mmc)
{
	mmc->set_ios(mmc);
}

void mmc_set_clock(struct mmc *mmc, uint clock)
{
	if (clock > mmc->f_max)
		clock = mmc->f_max;

	if (clock < mmc->f_min)
		clock = mmc->f_min;

	mmc->clock = clock;

	mmc_set_ios(mmc);
}

void mmc_set_bus_width(struct mmc *mmc, uint width)
{
	mmc->bus_width = width;

	mmc_set_ios(mmc);
}

int mmc_startup(struct mmc *mmc)
{
886
	int err, width;
887
	uint mult, freq;
888
	u64 cmult, csize, capacity;
889
	struct mmc_cmd cmd;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, 512);
	ALLOC_CACHE_ALIGN_BUFFER(char, test_csd, 512);
	int timeout = 1000;

#ifdef CONFIG_MMC_SPI_CRC_ON
	if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
		cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
		cmd.resp_type = MMC_RSP_R1;
		cmd.cmdarg = 1;
		cmd.flags = 0;
		err = mmc_send_cmd(mmc, &cmd, NULL);

		if (err)
			return err;
	}
#endif
906 907

	/* Put the Card in Identify Mode */
908 909
	cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
		MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
	cmd.resp_type = MMC_RSP_R2;
	cmd.cmdarg = 0;
	cmd.flags = 0;

	err = mmc_send_cmd(mmc, &cmd, NULL);

	if (err)
		return err;

	memcpy(mmc->cid, cmd.response, 16);

	/*
	 * For MMC cards, set the Relative Address.
	 * For SD cards, get the Relatvie Address.
	 * This also puts the cards into Standby State
	 */
926 927 928 929 930
	if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
		cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
		cmd.cmdarg = mmc->rca << 16;
		cmd.resp_type = MMC_RSP_R6;
		cmd.flags = 0;
931

932
		err = mmc_send_cmd(mmc, &cmd, NULL);
933

934 935
		if (err)
			return err;
936

937 938 939
		if (IS_SD(mmc))
			mmc->rca = (cmd.response[0] >> 16) & 0xffff;
	}
940 941 942 943 944 945 946 947 948

	/* Get the Card-Specific Data */
	cmd.cmdidx = MMC_CMD_SEND_CSD;
	cmd.resp_type = MMC_RSP_R2;
	cmd.cmdarg = mmc->rca << 16;
	cmd.flags = 0;

	err = mmc_send_cmd(mmc, &cmd, NULL);

949 950 951
	/* Waiting for the ready status */
	mmc_send_status(mmc, timeout);

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	if (err)
		return err;

	mmc->csd[0] = cmd.response[0];
	mmc->csd[1] = cmd.response[1];
	mmc->csd[2] = cmd.response[2];
	mmc->csd[3] = cmd.response[3];

	if (mmc->version == MMC_VERSION_UNKNOWN) {
		int version = (cmd.response[0] >> 26) & 0xf;

		switch (version) {
			case 0:
				mmc->version = MMC_VERSION_1_2;
				break;
			case 1:
				mmc->version = MMC_VERSION_1_4;
				break;
			case 2:
				mmc->version = MMC_VERSION_2_2;
				break;
			case 3:
				mmc->version = MMC_VERSION_3;
				break;
			case 4:
				mmc->version = MMC_VERSION_4;
				break;
			default:
				mmc->version = MMC_VERSION_1_2;
				break;
		}
	}

	/* divide frequency by 10, since the mults are 10x bigger */
	freq = fbase[(cmd.response[0] & 0x7)];
	mult = multipliers[((cmd.response[0] >> 3) & 0xf)];

	mmc->tran_speed = freq * mult;

	mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);

	if (IS_SD(mmc))
		mmc->write_bl_len = mmc->read_bl_len;
	else
		mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);

	if (mmc->high_capacity) {
		csize = (mmc->csd[1] & 0x3f) << 16
			| (mmc->csd[2] & 0xffff0000) >> 16;
		cmult = 8;
	} else {
		csize = (mmc->csd[1] & 0x3ff) << 2
			| (mmc->csd[2] & 0xc0000000) >> 30;
		cmult = (mmc->csd[2] & 0x00038000) >> 15;
	}

	mmc->capacity = (csize + 1) << (cmult + 2);
	mmc->capacity *= mmc->read_bl_len;

	if (mmc->read_bl_len > 512)
		mmc->read_bl_len = 512;

	if (mmc->write_bl_len > 512)
		mmc->write_bl_len = 512;

	/* Select the card, and put it into Transfer Mode */
1018 1019 1020 1021 1022 1023
	if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
		cmd.cmdidx = MMC_CMD_SELECT_CARD;
		cmd.resp_type = MMC_RSP_R1;
		cmd.cmdarg = mmc->rca << 16;
		cmd.flags = 0;
		err = mmc_send_cmd(mmc, &cmd, NULL);
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		if (err)
			return err;
	}

	/*
	 * For SD, its erase group is always one sector
	 */
	mmc->erase_grp_size = 1;
	mmc->part_config = MMCPART_NOAVAILABLE;
	if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
		/* check  ext_csd version and capacity */
		err = mmc_send_ext_csd(mmc, ext_csd);
		if (!err & (ext_csd[EXT_CSD_REV] >= 2)) {
			/*
			 * According to the JEDEC Standard, the value of
			 * ext_csd's capacity is valid if the value is more
			 * than 2GB
			 */
			capacity = ext_csd[EXT_CSD_SEC_CNT] << 0
					| ext_csd[EXT_CSD_SEC_CNT + 1] << 8
					| ext_csd[EXT_CSD_SEC_CNT + 2] << 16
					| ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
			capacity *= 512;
			if ((capacity >> 20) > 2 * 1024)
				mmc->capacity = capacity;
		}

		/*
		 * Check whether GROUP_DEF is set, if yes, read out
		 * group size from ext_csd directly, or calculate
		 * the group size from the csd value.
		 */
		if (ext_csd[EXT_CSD_ERASE_GROUP_DEF])
			mmc->erase_grp_size =
			      ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 512 * 1024;
		else {
			int erase_gsz, erase_gmul;
			erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
			erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
			mmc->erase_grp_size = (erase_gsz + 1)
				* (erase_gmul + 1);
		}

		/* store the partition info of emmc */
		if (ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT)
			mmc->part_config = ext_csd[EXT_CSD_PART_CONF];
	}
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

	if (IS_SD(mmc))
		err = sd_change_freq(mmc);
	else
		err = mmc_change_freq(mmc);

	if (err)
		return err;

	/* Restrict card's capabilities by what the host can do */
	mmc->card_caps &= mmc->host_caps;

	if (IS_SD(mmc)) {
		if (mmc->card_caps & MMC_MODE_4BIT) {
			cmd.cmdidx = MMC_CMD_APP_CMD;
			cmd.resp_type = MMC_RSP_R1;
			cmd.cmdarg = mmc->rca << 16;
			cmd.flags = 0;

			err = mmc_send_cmd(mmc, &cmd, NULL);
			if (err)
				return err;

			cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
			cmd.resp_type = MMC_RSP_R1;
			cmd.cmdarg = 2;
			cmd.flags = 0;
			err = mmc_send_cmd(mmc, &cmd, NULL);
			if (err)
				return err;

			mmc_set_bus_width(mmc, 4);
		}

		if (mmc->card_caps & MMC_MODE_HS)
			mmc_set_clock(mmc, 50000000);
		else
			mmc_set_clock(mmc, 25000000);
	} else {
1111
		for (width = EXT_CSD_BUS_WIDTH_8; width >= 0; width--) {
1112 1113
			/* Set the card to use 4 bit*/
			err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
1114
					EXT_CSD_BUS_WIDTH, width);
1115 1116

			if (err)
1117
				continue;
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
			if (!width) {
				mmc_set_bus_width(mmc, 1);
				break;
			} else
				mmc_set_bus_width(mmc, 4 * width);

			err = mmc_send_ext_csd(mmc, test_csd);
			if (!err && ext_csd[EXT_CSD_PARTITIONING_SUPPORT] \
				    == test_csd[EXT_CSD_PARTITIONING_SUPPORT]
				 && ext_csd[EXT_CSD_ERASE_GROUP_DEF] \
				    == test_csd[EXT_CSD_ERASE_GROUP_DEF] \
				 && ext_csd[EXT_CSD_REV] \
				    == test_csd[EXT_CSD_REV]
				 && ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] \
				    == test_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
				 && memcmp(&ext_csd[EXT_CSD_SEC_CNT], \
					&test_csd[EXT_CSD_SEC_CNT], 4) == 0) {

				mmc->card_caps |= width;
				break;
			}
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		}

		if (mmc->card_caps & MMC_MODE_HS) {
			if (mmc->card_caps & MMC_MODE_HS_52MHz)
				mmc_set_clock(mmc, 52000000);
			else
				mmc_set_clock(mmc, 26000000);
		} else
			mmc_set_clock(mmc, 20000000);
	}

	/* fill in device description */
	mmc->block_dev.lun = 0;
	mmc->block_dev.type = 0;
	mmc->block_dev.blksz = mmc->read_bl_len;
	mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
	sprintf(mmc->block_dev.vendor, "Man %06x Snr %08x", mmc->cid[0] >> 8,
			(mmc->cid[2] << 8) | (mmc->cid[3] >> 24));
	sprintf(mmc->block_dev.product, "%c%c%c%c%c", mmc->cid[0] & 0xff,
			(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
			(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
	sprintf(mmc->block_dev.revision, "%d.%d", mmc->cid[2] >> 28,
			(mmc->cid[2] >> 24) & 0xf);
	init_part(&mmc->block_dev);

	return 0;
}

int mmc_send_if_cond(struct mmc *mmc)
{
	struct mmc_cmd cmd;
	int err;

	cmd.cmdidx = SD_CMD_SEND_IF_COND;
	/* We set the bit if the host supports voltages between 2.7 and 3.6 V */
	cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa;
	cmd.resp_type = MMC_RSP_R7;
	cmd.flags = 0;

	err = mmc_send_cmd(mmc, &cmd, NULL);

	if (err)
		return err;

	if ((cmd.response[0] & 0xff) != 0xaa)
		return UNUSABLE_ERR;
	else
		mmc->version = SD_VERSION_2;

	return 0;
}

int mmc_register(struct mmc *mmc)
{
	/* Setup the universal parts of the block interface just once */
	mmc->block_dev.if_type = IF_TYPE_MMC;
	mmc->block_dev.dev = cur_dev_num++;
	mmc->block_dev.removable = 1;
	mmc->block_dev.block_read = mmc_bread;
	mmc->block_dev.block_write = mmc_bwrite;
1200 1201 1202
	mmc->block_dev.block_erase = mmc_berase;
	if (!mmc->b_max)
		mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1203 1204 1205 1206 1207 1208 1209 1210

	INIT_LIST_HEAD (&mmc->link);

	list_add_tail (&mmc->link, &mmc_devices);

	return 0;
}

1211
#ifdef CONFIG_PARTITIONS
1212 1213 1214 1215 1216 1217
block_dev_desc_t *mmc_get_dev(int dev)
{
	struct mmc *mmc = find_mmc_device(dev);

	return mmc ? &mmc->block_dev : NULL;
}
1218
#endif
1219 1220 1221 1222 1223

int mmc_init(struct mmc *mmc)
{
	int err;

1224 1225 1226 1227 1228 1229 1230 1231 1232
	if (mmc_getcd(mmc) == 0) {
		mmc->has_init = 0;
		printf("MMC: no card present\n");
		return NO_CARD_ERR;
	}

	if (mmc->has_init)
		return 0;

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	err = mmc->init(mmc);

	if (err)
		return err;

	mmc_set_bus_width(mmc, 1);
	mmc_set_clock(mmc, 1);

	/* Reset the Card */
	err = mmc_go_idle(mmc);

	if (err)
		return err;

1247 1248 1249
	/* The internal partition reset to user partition(0) at every CMD0*/
	mmc->part_num = 0;

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	/* Test for SD version 2 */
	err = mmc_send_if_cond(mmc);

	/* Now try to get the SD card's operating condition */
	err = sd_send_op_cond(mmc);

	/* If the command timed out, we check for an MMC card */
	if (err == TIMEOUT) {
		err = mmc_send_op_cond(mmc);

		if (err) {
			printf("Card did not respond to voltage select!\n");
			return UNUSABLE_ERR;
		}
	}

1266 1267 1268 1269 1270 1271
	err = mmc_startup(mmc);
	if (err)
		mmc->has_init = 0;
	else
		mmc->has_init = 1;
	return err;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
}

/*
 * CPU and board-specific MMC initializations.  Aliased function
 * signals caller to move on
 */
static int __def_mmc_init(bd_t *bis)
{
	return -1;
}

int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));

void print_mmc_devices(char separator)
{
	struct mmc *m;
	struct list_head *entry;

	list_for_each(entry, &mmc_devices) {
		m = list_entry(entry, struct mmc, link);

		printf("%s: %d", m->name, m->block_dev.dev);

		if (entry->next != &mmc_devices)
			printf("%c ", separator);
	}

	printf("\n");
}

1303 1304 1305 1306 1307
int get_mmc_num(void)
{
	return cur_dev_num;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
int mmc_initialize(bd_t *bis)
{
	INIT_LIST_HEAD (&mmc_devices);
	cur_dev_num = 0;

	if (board_mmc_init(bis) < 0)
		cpu_mmc_init(bis);

	print_mmc_devices(',');

	return 0;
}